The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides.

نویسندگان

  • V Nivière
  • F Fieschi
  • J L Dećout
  • M Fontecave
چکیده

The NAD(P)H:flavin oxidoreductase from Escherichia coli, named Fre, is a monomer of 26.2 kDa that catalyzes the reduction of free flavins using NADPH or NADH as electron donor. The enzyme does not contain any prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin in a ternary complex prior to oxidoreduction. The specificity of the flavin reductase for the pyridine nucleotide was studied by steady-state kinetics using a variety of NADP analogs. Both the nicotinamide ring and the adenosine part of the substrate molecule have been found to be important for binding to the polypeptide chain. However, in the case of NADPH, the 2'-phosphate group destabilized almost completely the interaction with the adenosine moiety. Moreover, NADPH and NMNH are very good substrates for the flavin reductase, and we have shown that both these molecules bind to the enzyme almost exclusively by the nicotinamide ring. This provides evidence that the flavin reductase exhibits a unique mode for recognition of the reduced pyridine nucleotide. In addition, we have shown that the flavin reductase selectively transfers the pro-R hydrogen from the C-4 position of the nicotinamide ring and is therefore classified as an A-side-specific enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.

Flavin reductase catalyzes the reduction of free flavins by NAD(P)H. As isolated, Escherichia coli flavin reductase does not contain any flavin prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin substrate in a ternary complex prior to oxidoreduction. The reduction of riboflavin by NADPH catalyzed by flavin reductase has been studied by static and rapid kinetic...

متن کامل

FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.

Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showe...

متن کامل

NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction.

A unique form of inhibition by NADH and partial reversal by NAD+ has been demonstrated with Escherichia coli lipoamide dehydrogenase. Substrate inhibition by NADH is consistent with its reduction of the active two-electron reduced enzyme intermediate to the inactive four-electron reduced form. NAD+ partially overcomes this inhibition by mass action reversal of this reduction. NAD+ activation is...

متن کامل

Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...

متن کامل

Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase.

YqjH is a cytoplasmic FAD-containing protein from Escherichia coli; based on homology to ViuB of Vibrio cholerae, it potentially acts as a ferri-siderophore reductase. This work describes its overexpression, purification, crystallization and structure solution at 3.0 A resolution. YqjH shares high sequence similarity with a number of known siderophore-interacting proteins and its structure was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 26  شماره 

صفحات  -

تاریخ انتشار 1999